Decide if the statements are

## True of False?

| When substituting numbers <br> for letters the rule is always <br> that $a$ is $1, b$ is $2, c$ is 3 <br> etc... | When solving equations <br> you cannot get a negative <br> number as your answer. |
| :---: | :---: |
| Different letters must stand <br> for different numbers | You cannot use zero when <br> substituting into <br> expressions |
| Letters must always <br> represent whole numbers | $a+b$ will give the same <br> answer as $b+a$ |
| multiplication is <br> commutative | $a-b$ will give the same <br> answer as $b-a$ |
| $a>b$ means that $a$ is more <br> than $b$ | You cannot divide $a$ <br> number by zero |

## Solutions:

| When substituting numbers for letters the rule is always that a is $1, \mathrm{~b}$ is $2, \mathrm{c}$ is $3 \ldots$ False any letter can represent any number | When solving equations you cannot get a negative number as your answer False, any number is possible as an answer. |
| :---: | :---: |
| Different letters must stand for different numbers False, it is fine to have two letters representing the same number | You cannot use zero when substituting into expressions <br> False, zero is an acceptable number to use |
| Letters must always represent whole numbers False, any number can be used | $a+b$ will give the same answer as b+a True, addition is commutative |
| multiplication is commutative <br> True, $\mathrm{a} \times \mathrm{b}=\mathrm{b} \times \mathrm{a}$ | $a-b$ will give the same answer as b-a False, this will not usually be true |
| $\mathrm{a}>\mathrm{b}$ means that a is more than b True | You cannot divide a number by zero <br> True, a quantity cannot be divided into zero parts |

